• 首页
  • 工作总结
  • 工作计划
  • 读后感
  • 发言稿
  • 心得体会
  • 申请书大全
  • 作文大全
  • 范文大全
    • 当前位置:主页 > 工作总结 >
    • 小学数学应用题21种类型总结(附例题、解题思路)
    • 发布时间:2021-09-18 19:36:19 | 浏览: 次
    •   1、归一问题

        【含义】

        在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

        【数量关系】

        总量份数=1份数量

        1份数量所占份数=所求几份的数量

        另一总量(总量份数)=所求份数

        【解题思路和方法】

        先求出单一量,以单一量为标准,求出所要求的数量。

        例1

        买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?

        解

        (1)买1支铅笔多少钱?0.65=0.12(元)

        (2)买16支铅笔需要多少钱?0.1216=1.92(元)

        列成综合算式0.6516=0.1216=1.92(元)

        答:需要1.92元。

        例2

        3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6天耕地多少公顷?

        解

        (1)1台拖拉机1天耕地多少公顷?9033=10(公顷)

        (2)5台拖拉机6天耕地多少公顷?1056=300(公顷)

        列成综合算式903356=1030=300(公顷)

        答:5台拖拉机6天耕地300公顷。

        例3

        5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?

        解

        (1)1辆汽车1次能运多少吨钢材?10054=5(吨)

        (2)7辆汽车1次能运多少吨钢材?57=35(吨)

        (3)105吨钢材7辆汽车需要运几次?10535=3(次)

        列成综合算式105(100547)=3(次)

        答:需要运3次。


        2、归总问题

        【含义】

        解题时,常常先找出总数量,然后再根据其它条件算出所求的问题,叫归总问题。所谓总数量是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

        【数量关系】

        1份数量份数=总量

        总量1份数量=份数

        总量另一份数=另一每份数量

        【解题思路和方法】

        先求出总数量,再根据题意得出所求的数量。

        例1

        服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套?

        解

        (1)这批布总共有多少米?3.2791=2531.2(米)

        (2)现在可以做多少套?2531.22.8=904(套)

        列成综合算式3.27912.8=904(套)

        答:现在可以做904套。

        例2

        小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》?

        解

        (1)《红岩》这本书总共多少页?2412=288(页)

        (2)小明几天可以读完《红岩》?28836=8(天)

        列成综合算式241236=8(天)

        答:小明8天可以读完《红岩》。

        例3

        食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?

        解

        (1)这批蔬菜共有多少千克?5030=1500(千克)

        (2)这批蔬菜可以吃多少天?1500(50+10)=25(天)

        列成综合算式5030(50+10)=150060=25(天)

        答:这批蔬菜可以吃25天。


        3、和差问题

        【含义】

        已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

        【数量关系】

        大数=(和+差)2

        小数=(和-差)2

        【解题思路和方法】

        简单的题目可以直接套用公式;复杂的题目变通后再用公式。

        例1

        甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?

        解

        甲班人数=(98+6)2=52(人)

        乙班人数=(98-6)2=46(人)

        答:甲班有52人,乙班有46人。

        例2

        长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

        解

        长=(18+2)2=10(厘米)

        宽=(18-2)2=8(厘米)

        长方形的面积=108=80(平方厘米)

        答:长方形的面积为80平方厘米。

        例3

        有甲乙丙三袋化肥,甲乙两袋共重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。

        解

        甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32-30)=2千克,且甲是大数,丙是小数。由此可知

        甲袋化肥重量=(22+2)2=12(千克)

        丙袋化肥重量=(22-2)2=10(千克)

        乙袋化肥重量=32-12=20(千克)

        答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。

        例4

        甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐?

        解

        从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,这说明甲车是大数,乙车是小数,甲与乙的差是(142+3),甲与乙的和是97,因此甲车筐数=(97+142+3)2=64(筐)

        乙车筐数=97-64=33(筐)

        答:甲车原来装苹果64筐,乙车原来装苹果33筐。


        4、和倍问题

        【含义】

        已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。

        【数量关系】

        总和(几倍+1)=较小的数

        总和-较小的数=较大的数

        较小的数几倍=较大的数

        【解题思路和方法】

        简单的题目直接利用公式,复杂的题目变通后利用公式。

        例1

        果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?

        解

        (1)杏树有多少棵?248(3+1)=62(棵)

        (2)桃树有多少棵?623=186(棵)

        答:杏树有62棵,桃树有186棵。

        例2

        东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨?

        解

        (1)西库存粮数=480(1.4+1)=200(吨)

        (2)东库存粮数=480-200=280(吨)

        答:东库存粮280吨,西库存粮200吨。

        例3

        甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?

        解

        每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(28-24)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(52+32)就相当于(2+1)倍,

        那么,几天以后甲站的车辆数减少为

        (52+32)(2+1)=28(辆)

        所求天数为(52-28)(28-24)=6(天)

        答:6天以后乙站车辆数是甲站的2倍。

        例4

        甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?

        解

        乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。

        因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍;

        又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍;

        这时(170+4-6)就相当于(1+2+3)倍。那么,

        甲数=(170+4-6)(1+2+3)=28

        乙数=282-4=52

        丙数=283+6=90

        答:甲数是28,乙数是52,丙数是90。


        5、差倍问题

        【含义】

        已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。

        【数量关系】

        两个数的差(几倍-1)=较小的数

        较小的数几倍=较大的数

        【解题思路和方法】

        简单的题目直接利用公式,复杂的题目变通后利用公式。

        例1

        果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵?

        解

        (1)杏树有多少棵?124(3-1)=62(棵)

        (2)桃树有多少棵?623=186(棵)

        答:果园里杏树是62棵,桃树是186棵。

        例2

        爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?

        解

        (1)儿子年龄=27(4-1)=9(岁)

        (2)爸爸年龄=94=36(岁)

        答:父子二人今年的年龄分别是36岁和9岁。

        例3

        商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?

        解

        如果把上月盈利作为1倍量,则(30-12)万元就相当于上月盈利的(2-1)倍,因此

        上月盈利=(30-12)(2-1)=18(万元)

        本月盈利=18+30=48(万元)

        答:上月盈利是18万元,本月盈利是48万元。

        例4

        粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍?

        解

        由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(138-94)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是3倍量,那么,(138-94)就相当于(3-1)倍,因此

        剩下的小麦数量=(138-94)(3-1)=22(吨)

        运出的小麦数量=94-22=72(吨)

        运粮的天数=729=8(天)

        答:8天以后剩下的玉米是小麦的3倍。


        6、倍比问题

        【含义】

        有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。

        【数量关系】

        总量一个数量=倍数

        另一个数量倍数=另一总量

        【解题思路和方法】

        先求出倍数,再用倍比关系求出要求的数。

        例1

        100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?

        解

        (1)3700千克是100千克的多少倍?3700100=37(倍)

        (2)可以榨油多少千克?4037=1480(千克)

        列成综合算式40(3700100)=1480(千克)

        答:可以榨油1480千克。

        例2

        今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?

        解

        (1)48000名是300名的多少倍?48000300=160(倍)

        (2)共植树多少棵?400160=64000(棵)

        列成综合算式400(48000300)=64000(棵)

        答:全县48000名师生共植树64000棵。

        例3

        凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入多少元?

        解

        (1)800亩是4亩的几倍?8004=200(倍)

        (2)800亩收入多少元?11111200=2222200(元)

        (3)16000亩是800亩的几倍?16000800=20(倍)

        (4)16000亩收入多少元?222220020=44444000(元)

        答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。


        7、相遇问题

        【含义】

        两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。

        【数量关系】

        相遇时间=总路程(甲速+乙速)

        总路程=(甲速+乙速)相遇时间

        【解题思路和方法】

        简单的题目可直接利用公式,复杂的题目变通后再利用公式。

        例1

        南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?

        解

        392(28+21)=8(小时)

        答:经过8小时两船相遇。

        例2

        小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?

        解

        第二次相遇可以理解为二人跑了两圈。

        因此总路程为4002

        相遇时间=(4002)(5+3)=100(秒)

        答:二人从出发到第二次相遇需100秒时间。

        例3

        甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

        解

        两人在距中点3千米处相遇是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(32)千米,因此,

        相遇时间=(32)(15-13)=3(小时)

        两地距离=(15+13)3=84(千米)

        答:两地距离是84千米。


        8、追及问题

        【含义】

        两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。

        【数量关系】

        追及时间=追及路程(快速-慢速)

        追及路程=(快速-慢速)追及时间

        【解题思路和方法】

        简单的题目直接利用公式,复杂的题目变通后利用公式。

        例1

        好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?

        解

        (1)劣马先走12天能走多少千米?7512=900(千米)

        (2)好马几天追上劣马?900(120-75)=20(天)

        列成综合算式7512(120-75)=90045=20(天)

        答:好马20天能追上劣马。

        例2

        小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。

        解

        小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用秒,所以小亮的速度是

        (500-200)

        =300100=3(米)

        答:小亮的速度是每秒3米。

        例3

        我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?

        解

        敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是千米,甲乙两地相距60千米。由此推知

        追及时间=(30-10)

        =22020=11(小时)

        答:解放军在11小时后可以追上敌人。

        例4

        一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。

        解

        这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(162)千米,客车追上货车的时间就是前面所说的相遇时间,

        这个时间为162(48-40)=4(小时)

        所以两站间的距离为(48+40)4=352(千米)

        列成综合算式(48+40)

        =884

        =352(千米)

        答:甲乙两站的距离是352千米。


        9、植树问题

        【含义】

        按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,这类应用题叫做植树问题。

        【数量关系】

        线形植树棵数=距离棵距+1

        环形植树棵数=距离棵距

        方形植树棵数=距离棵距-4

        三角形植树棵数=距离棵距-3

        面积植树棵数=面积(棵距行距)

        【解题思路和方法】

        先弄清楚植树问题的类型,然后可以利用公式。

        例1

        一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?

        解

        1362+1=68+1=69(棵)

        答:一共要栽69棵垂柳。

        例2

        一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?

        解

        4004=100(棵)

        答:一共能栽100棵白杨树。

        例3

        一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?

        解

        22048-4=110-4=106(个)

        答:一共可以安装106个照明灯。

        例4

        给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?

        解

        96(0.60.4)=960.24=400(块)

        答:至少需要400块地板砖。

        例5

        一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?

        解

        (1)桥的一边有多少个电杆?50050+1=11(个)

        (2)桥的两边有多少个电杆?112=22(个)

        (3)大桥两边可安装多少盏路灯?222=44(盏)

        答:大桥两边一共可以安装44盏路灯。


        10、年龄问题

        【含义】

        这类问题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。

        【数量关系】

        年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住年龄差不变这个特点。

        【解题思路和方法】

        可以利用差倍问题的解题思路和方法。

        例1

        爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?

        解

        355=7(倍)

        (35+1)(5+1)=6(倍)

        答:今年爸爸的年龄是亮亮的7倍,

        明年爸爸的年龄是亮亮的6倍。

        例2

        母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?

        解

        (1)母亲比女儿的年龄大多少岁?37-7=30(岁)

        (2)几年后母亲的年龄是女儿的4倍?30(4-1)-7=3(年)

        列成综合算式(37-7)(4-1)-7=3(年)

        答:3年后母亲的年龄是女儿的4倍。

        例3

        甲对乙说:当我的岁数曾经是你现在的岁数时,你才4岁。乙对甲说:当我的岁数将来是你现在的岁数时,你将61岁。求甲乙现在的岁数各是多少?

        解

        这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:

        过去某一年 今年 将来某一年

        甲 □岁 △岁 61岁

        乙 4岁 □岁 △岁

        表中两个□表示同一个数,两个△表示同一个数。

        因为两个人的年龄差总相等:□-4=△-□=61-△,也就是4,□,△,61成等差数列,所以,61应该比4大3个年龄差,

        因此二人年龄差为(61-4)3=19(岁)

        甲今年的岁数为△=61-19=42(岁)

        乙今年的岁数为□=42-19=23(岁)

        答:甲今年的岁数是42岁,乙今年的岁数是23岁。


        11、行船问题

        【含义】

        行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。

        【数量关系】

        (顺水速度+逆水速度)2=船速

        (顺水速度-逆水速度)2=水速

        顺水速=船速2-逆水速=逆水速+水速2

        逆水速=船速2-顺水速=顺水速-水速2

        【解题思路和方法】

        大多数情况可以直接利用数量关系的公式。

        例1

        一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?

        解

        由条件知,顺水速=船速+水速=3208,而水速为每小时15千米,所以,船速为每小时3208-15=25(千米)

        船的逆水速为25-15=10(千米)

        船逆水行这段路程的时间为32010=32(小时)

        答:这只船逆水行这段路程需用32小时。

        例2

        甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?

        解

        由题意得甲船速+水速=36010=36

        甲船速-水速=36018=20

        可见(36-20)相当于水速的2倍,

        所以,水速为每小时(36-20)2=8(千米)

        又因为,乙船速-水速=36015,

        所以,乙船速为36015+8=32(千米)

        乙船顺水速为32+8=40(千米)

        所以,乙船顺水航行360千米需要

        36040=9(小时)

        答:乙船返回原地需要9小时。


        12、列车问题

        【含义】

        这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。

        【数量关系】

        火车过桥:过桥时间=(车长+桥长)车速

        火车追及:追及时间=(甲车长+乙车长+距离)

        (甲车速-乙车速)

        火车相遇:相遇时间=(甲车长+乙车长+距离)

        (甲车速+乙车速)

        【解题思路和方法】

        大多数情况可以直接利用数量关系的公式。

        例1

        一座大桥长2400米,一列火车以每分钟900米的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?

        解

        火车3分钟所行的路程,就是桥长与火车车身长度的和。

        (1)火车3分钟行多少米?9003=2700(米)

        (2)这列火车长多少米?2700-2400=300(米)

        列成综合算式9003-2400=300(米)

        答:这列火车长300米。

        例2

        一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?

        解

        火车过桥所用的时间是2分5秒=125秒,所走的路程是(8125)米,这段路程就是(200米+桥长),所以,桥长为

        8125-200=800(米)

        答:大桥的长度是800米。

        例3

        一列长225米的慢车以每秒17米的速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?

        解

        从追上到追过,快车比慢车要多行(225+140)米,而快车比慢车每秒多行(22-17)米,因此,所求的时间为

        (225+140)(22-17)=73(秒)

        答:需要73秒。

        例4

        一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?

        解

        如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。

        150(22+3)=6(秒)

        答:火车从工人身旁驶过需要6秒钟。


        13、时钟问题

        【含义】

        就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。

        【数量关系】

        分针的速度是时针的12倍,

        二者的速度差为11/12。

        通常按追及问题来对待,也可以按差倍问题来计算。

        【解题思路和方法】

        变通为追及问题后可以直接利用公式。

        例1

        从时针指向4点开始,再经过多少分钟时针正好与分针重合?

        解

        钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/60=1/12格。每分钟分针比时针多走(1-1/12)=11/12格。4点整,时针在前,分针在后,两针相距20格。所以

        分针追上时针的时间为20(1-1/12)22(分)

        答:再经过22分钟时针正好与分针重合。

        例2

        四点和五点之间,时针和分针在什么时候成直角?

        解

        钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后15格两种情况)。四点整的时候,分针在时针后(54)格,如果分针在时针后与它成直角,那么分针就要比时针多走(54-15)格,如果分针在时针前与它成直角,那么分针就要比时针多走(54+15)格。再根据1分钟分针比时针多走(1-1/12)格就可以求出二针成直角的时间。

        (54-15)(1-1/12)6(分)

        (54+15)(1-1/12)38(分)

        答:4点06分及4点38分时两针成直角。

        例3

        六点与七点之间什么时候时针与分针重合?

        解

        六点整的时候,分针在时针后(56)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。

        (56)(1-1/12)33(分)

        答:6点33分的时候分针与时针重合。


        14、盈亏问题

        【含义】

        根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。

        【数量关系】

        一般地说,在两次分配中,如果一次盈,一次亏,则有:

        参加分配总人数=(盈+亏)分配差

        如果两次都盈或都亏,则有:

        参加分配总人数=(大盈-小盈)分配差

        参加分配总人数=(大亏-小亏)分配差

        【解题思路和方法】

        大多数情况可以直接利用数量关系的公式。

        例1

        给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹果?

        解

        按照参加分配的总人数=(盈+亏)分配差的数量关系:

        (1)有小朋友多少人?(11+1)(4-3)=12(人)

        (2)有多少个苹果?312+11=47(个)

        答:有小朋友12人,有47个苹果。

        例2

        修一条公路,如果每天修260米,修完全长就得延长8天;如果每天修300米,修完全长仍得延长4天。这条路全长多少米?

        解

        题中原定完成任务的天数,就相当于参加分配的总人数,按照参加分配的总人数=(大亏-小亏)分配差的数量关系,可以得知

        原定完成任务的天数为

        (2608-3004)(300-260)=22(天)

        这条路全长为300(22+4)=7800(米)

        答:这条路全长7800米。

        例3

        组织春游,如果每辆车坐40人,就余下30人;如果每辆车坐45人,就刚好坐完。问有多少车?多少人?

        解

        本题中的车辆数就相当于参加分配的总人数,于是就有

        (1)有多少车?(30-0)(45-40)=6(辆)

        (2)有多少人?406+30=270(人)

        答:有6辆车,有270人。


        15、工程问题

        【含义】

        工程问题主要研究工作量、工作效率和工作时间三者之间的关系。这类问题在已知条件中,常常不给出工作量的具体数量,只提出一项工程、一块土地、一条水渠、一件工作等,在解题时,常常用单位1表示工作总量。

        【数量关系】

        解答工程问题的关键是把工作总量看作1,这样,工作效率就是工作时间的倒数(它表示单位时间内完成工作总量的几分之几),进而就可以根据工作量、工作效率、工作时间三者之间的关系列出算式。

        工作量=工作效率工作时间

        工作时间=工作量工作效率

        工作时间=总工作量(甲工作效率+乙工作效率)

        【解题思路和方法】

        变通后可以利用上述数量关系的公式。

        例1

        一项工程,甲队单独做需要10天完成,乙队单独做需要15天完成,现在两队合作,需要几天完成?

        解

        题中的一项工程是工作总量,由于没有给出这项工程的具体数量,因此,把此项工程看作单位1。由于甲队独做需10天完成,那么每天完成这项工程的1/10;乙队单独做需15天完成,每天完成这项工程的1/15;两队合做,每天可以完成这项工程的(1/10+1/15)。

        由此可以列出算式:1(1/10+1/15)=11/6=6(天)

        答:两队合做需要6天完成。

        例2

        一批零件,甲独做6小时完成,乙独做8小时完成。现在两人合做,完成任务时甲比乙多做24个,求这批零件共有多少个?

        解一

        设总工作量为1,则甲每小时完成1/6,乙每小时完成1/8,甲比乙每小时多完成(1/6-1/8),二人合做时每小时完成(1/6+1/8)。因为二人合做需要小时,这个时间内,甲比乙多做24个零件,所以

        (1)每小时甲比乙多做多少零件?

        24=7(个)

        (2)这批零件共有多少个?

        7(1/6-1/8)=168(个)

        答:这批零件共有168个。

        解二

        上面这道题还可以用另一种方法计算:

        两人合做,完成任务时甲乙的工作量之比为1/6∶1/8=4∶3

        由此可知,甲比乙多完成总工作量的4-3/4+3=1/7

        所以,这批零件共有241/7=168(个)

        例3

        一件工作,甲独做12小时完成,乙独做10小时完成,丙独做15小时完成。现在甲先做2小时,余下的由乙丙二人合做,还需几小时才能完成?

        解

        必须先求出各人每小时的工作效率。如果能把效率用整数表示,就会给计算带来方便,因此,我们设总工作量为12、10、和15的某一公倍数,例如最小公倍数60,则甲乙丙三人的工作效率分别是

        6012=56010=66015=4

        因此余下的工作量由乙丙合做还需要

        (60-52)(6+4)=5(小时)

        答:还需要5小时才能完成。

        例4

        一个水池,底部装有一个常开的排水管,上部装有若干个同样粗细的进水管。当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池;现在要用2小时将水池注满,至少要打开多少个进水管?

        解

        注(排)水问题是一类特殊的工程问题。往水池注水或从水池排水相当于一项工程,水的流量就是工作量,单位时间内水的流量就是工作效率。

        要2小时内将水池注满,即要使2小时内的进水量与排水量之差刚好是一池水。为此需要知道进水管、排水管的工作效率及总工作量(一池水)。只要设某一个量为单位1,其余两个量便可由条件推出。

        我们设每个同样的进水管每小时注水量为1,则4个进水管5小时注水量为(145),2个进水管15小时注水量为(1215),从而可知

        每小时的排水量为(1215-145)(15-5)=1

        即一个排水管与每个进水管的工作效率相同。由此可知

        一池水的总工作量为145-15=15

        又因为在2小时内,每个进水管的注水量为12,

        所以,2小时内注满一池水

        至少需要多少个进水管?(15+12)(12)

        =8.59(个)

        答:至少需要9个进水管。


        16、正反比例问题

        【含义】

        两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比的比值一定(即商一定),那么这两种量就叫做成正比例的量,它们的关系叫做正比例关系。正比例应用题是正比例意义和解比例等知识的综合运用。

        两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。反比例应用题是反比例的意义和解比例等知识的综合运用。

        【数量关系】

        判断正比例或反比例关系是解这类应用题的关键。许多典型应用题都可以转化为正反比例问题去解决,而且比较简捷。

        【解题思路和方法】

        解决这类问题的重要方法是:把分率(倍数)转化为比,应用比和比例的性质去解应用题。

        正反比例问题与前面讲过的倍比问题基本类似。

        例1

        修一条公路,已修的是未修的1/3,再修300米后,已修的变成未修的1/2,求这条公路总长是多少米?

        解

        由条件知,公路总长不变。

        原已修长度∶总长度=1∶(1+3)=1∶4=3∶12

        现已修长度∶总长度=1∶(1+2)=1∶3=4∶12

        比较以上两式可知,把总长度当作12份,则300米相当于(4-3)份,从而知公路总长为300(4-3)12=3600(米)

        答:这条公路总长3600米。

        例2

        张晗做4道应用题用了28分钟,照这样计算,91分钟可以做几道应用题?

        解

        做题效率一定,做题数量与做题时间成正比例关系

        设91分钟可以做X应用题则有28∶4=91∶X

        28X=914X=91428X=13

        答:91分钟可以做13道应用题。

        例3

        孙亮看《十万个为什么》这本书,每天看24页,15天看完,如果每天看36页,几天就可以看完?

        解

        书的页数一定,每天看的页数与需要的天数成反比例关系

        设X天可以看完,就有24∶36=X∶15

        36X=2415X=10

        答:10天就可以看完。


        17、按比例分配问题

        【含义】

        所谓按比例分配,就是把一个数按照一定的比分成若干份。这类题的已知条件一般有两种形式:一是用比或连比的形式反映各部分占总数量的份数,另一种是直接给出份数。

        【数量关系】

        从条件看,已知总量和几个部分量的比;从问题看,求几个部分量各是多少。总份数=比的前后项之和

        【解题思路和方法】

        先把各部分量的比转化为各占总量的几分之几,把比的前后项相加求出总份数,再求各部分占总量的几分之几(以总份数作分母,比的前后项分别作分子),再按照求一个数的几分之几是多少的计算方法,分别求出各部分量的值。

        例1

        学校把植树560棵的任务按人数分配给三个班,已知一班有47人,二班有48人,三班有45人,三个班各植树多少棵?

        解

        总份数为47+48+45=140

        一班植树56047/140=188(棵)

        二班植树56048/140=192(棵)

        三班植树56045/140=180(棵)

        答:一、二、三班分别植树188棵、192棵、180棵。

        例2

        用60厘米长的铁丝围成一个三角形,三角形三条边的比是3∶4∶5。三条边的长各是多少厘米?

        解

        3+4+5=12603/12=15(厘米)

        604/12=20(厘米)

        605/12=25(厘米)

        答:三角形三条边的长分别是15厘米、20厘米、25厘米。

        例3

        从前有个牧民,临死前留下遗言,要把17只羊分给三个儿子,大儿子分总数的1/2,二儿子分总数的1/3,三儿子分总数的1/9,并规定不许把羊宰割分,求三个儿子各分多少只羊。

        解

        如果用总数乘以分率的方法解答,显然得不到符合题意的整数解。如果用按比例分配的方法解,则很容易得到

        1/2∶1/3∶1/9=9∶6∶2

        9+6+2=17179/17=9

        176/17=6172/17=2

        答:大儿子分得9只羊,二儿子分得6只羊,三儿子分得2只羊。

        例4

        某工厂第一、二、三车间人数之比为8∶12∶21,第一车间比第二车间少80人,三个车间共多少人?

        解

        80(12-8)(8+12+21)=820(人)

        答:三个车间一共820人。


        18、百分数问题

        【含义】

        百分数是表示一个数是另一个数的百分之几的数。百分数是一种特殊的分数。分数常常可以通分、约分,而百分数则无需;分数既可以表示率,也可以表示量,而百分数只能表示率;分数的分子、分母必须是自然数,而百分数的分子可以是小数;百分数有一个专门的记号%。

        在实际中和常用到百分点这个概念,一个百分点就是1%,两个百分点就是2%。

        【数量关系】

        掌握百分数、标准量比较量三者之间的数量关系:

        百分数=比较量标准量

        标准量=比较量百分数

        【解题思路和方法】

        一般有三种基本类型:

        (1)求一个数是另一个数的百分之几;

        (2)已知一个数,求它的百分之几是多少;

        (3)已知一个数的百分之几是多少,求这个数。

        例1

        仓库里有一批化肥,用去720千克,剩下6480千克,用去的与剩下的各占原重量的百分之几?

        解

        (1)用去的占720(720+6480)=10%

        (2)剩下的占6480(720+6480)=90%

        答:用去了10%,剩下90%。

        例2

        红旗化工厂有男职工420人,女职工525人,男职工人数比女职工少百分之几?

        解

        本题中女职工人数为标准量,男职工比女职工少的人数是比较量所以(525-420)525=0.2=20%

        或者1-420525=0.2=20%

        答:男职工人数比女职工少20%。

        例3

        红旗化工厂有男职工420人,女职工525人,女职工比男职工人数多百分之几?

        解

        本题中以男职工人数为标准量,女职工比男职工多的人数为比较量,因此

        (525-420)420=0.25=25%

        或者525420-1=0.25=25%

        答:女职工人数比男职工多25%。

        例4

        红旗化工厂有男职工420人,有女职工525人,男、女职工各占全厂职工总数的百分之几?

        解

        (1)男职工占420(420+525)=0.444=44.4%

        (2)女职工占525(420+525)=0.556=55.6%

        答:男职工占全厂职工总数的44.4%,女职工占55.6%。


        19、牛吃草问题

        【含义】

        牛吃草问题是大科学家牛顿提出的问题,也叫牛顿问题。这类问题的特点在于要考虑草边吃边长这个因素。

        【数量关系】

        草总量=原有草量+草每天生长量天数

        【解题思路和方法】

        解这类题的关键是求出草每天的生长量。

        例1

        一块草地,10头牛20天可以把草吃完,15头牛10天可以把草吃完。问多少头牛5天可以把草吃完?

        解

        草是均匀生长的,所以,草总量=原有草量+草每天生长量天数。求多少头牛5天可以把草吃完,就是说5天内的草总量要5天吃完的话,得有多少头牛?设每头牛每天吃草量为1,按以下步骤解答:

        (1)求草每天的生长量

        因为,一方面20天内的草总量就是10头牛20天所吃的草,即(11020);另一方面,20天内的草总量又等于原有草量加上20天内的生长量,所以

        11020=原有草量+20天内生长量

        同理11510=原有草量+10天内生长量

        由此可知(20-10)天内草的生长量为

        11020-11510=50

        因此,草每天的生长量为50(20-10)=5

        (2)求原有草量

        原有草量=10天内总草量-10内生长量=11510-510=100

        (3)求5天内草总量

        5天内草总量=原有草量+5天内生长量=100+55=125

        (4)求多少头牛5天吃完草

        因为每头牛每天吃草量为1,所以每头牛5天吃草量为5。

        因此5天吃完草需要牛的头数1255=25(头)

        答:需要5头牛5天可以把草吃完。

        例2

        一只船有一个漏洞,水以均匀速度进入船内,发现漏洞时已经进了一些水。如果有12个人淘水,3小时可以淘完;如果只有5人淘

        水,要10小时才能淘完。求17人几小时可以淘完?

        解

        这是一道变相的牛吃草问题。与上题不同的是,最后一问给出了人数(相当于牛数),求时间。设每人每小时淘水量为1,按以下步骤计算:

        (1)求每小时进水量

        因为,3小时内的总水量=1123=原有水量+3小时进水量

        10小时内的总水量=1510=原有水量+10小时进水量

        所以,(10-3)小时内的进水量为1510-1123=14

        因此,每小时的进水量为14(10-3)=2

        (2)求淘水前原有水量

        原有水量=1123-3小时进水量=36-23=30

        (3)求17人几小时淘完

        17人每小时淘水量为17,因为每小时漏进水为2,所以实际上船中每小时减少的水量为(17-2),所以17人淘完水的时间是

        30(17-2)=2(小时)

        答:17人2小时可以淘完水。


        20、鸡兔同笼问题

        【含义】

        这是古典的算术问题。已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

        【数量关系】

        第一鸡兔同笼问题:

        假设全都是鸡,则有

        兔数=(实际脚数-2鸡兔总数)(4-2)

        假设全都是兔,则有

        鸡数=(4鸡兔总数-实际脚数)(4-2)

        第二鸡兔同笼问题:

        假设全都是鸡,则有

        兔数=(2鸡兔总数-鸡与兔脚之差)(4+2)

        假设全都是兔,则有

        鸡数=(4鸡兔总数+鸡与兔脚之差)(4+2)

        【解题思路和方法】

        解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。

        例1

        长毛兔子芦花鸡,鸡兔圈在一笼里。数数头有三十五,脚数共有九十四。请你仔细算一算,多少兔子多少鸡?

        解

        假设35只全为兔,则

        鸡数=(435-94)(4-2)=23(只)

        兔数=35-23=12(只)

        也可以先假设35只全为鸡,则

        兔数=(94-235)(4-2)=12(只)

        鸡数=35-12=23(只)

        答:有鸡23只,有兔12只。

        例2

        2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?

        解

        此题实际上是改头换面的鸡兔同笼问题。每亩菠菜施肥(12)千克与每只鸡有两个脚相对应,每亩白菜施肥(35)千克与每只兔有4只脚相对应,16亩与鸡兔总数相对应,9千克与鸡兔总脚数相对应。假设16亩全都是菠菜,则有

        白菜亩数=(9-1216)(35-12)=10(亩)

        答:白菜地有10亩。

        例3

        李老师用69元给学校买作业本和日记本共45本,作业本每本3.20元,日记本每本0.70元。问作业本和日记本各买了多少本?

        解

        此题可以变通为鸡兔同笼问题。假设45本全都是日记本,则有

        作业本数=(69-0.7045)(3.20-0.70)=15(本)

        日记本数=45-15=30(本)

        答:作业本有15本,日记本有30本。

        例4

        (第二鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?

        解

        假设100只全都是鸡,则有

        兔数=(2100-80)(4+2)=20(只)

        鸡数=100-20=80(只)

        答:有鸡80只,有兔20只。

        例5

        有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?

        解

        假设全为大和尚,则共吃馍(3100)个,比实际多吃(3100-100)个,这是因为把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的情况下,以小换大,一个小和尚换掉一个大和尚可减少馍(3-1/3)个。因此,共有小和尚

        (3100-100)(3-1/3)=75(人)

        共有大和尚100-75=25(人)

        答:共有大和尚25人,有小和尚75人。


        21、方阵问题

        【含义】

        将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

        【数量关系】

        (1)方阵每边人数与四周人数的关系:

        四周人数=(每边人数-1)4

        每边人数=四周人数4+1

        (2)方阵总人数的求法:

        实心方阵:总人数=每边人数每边人数

        空心方阵:总人数=(外边人数)?-(内边人数)?

        内边人数=外边人数-层数2

        (3)若将空心方阵分成四个相等的矩形计算,则:

        总人数=(每边人数-层数)层数4

        【解题思路和方法】

        方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。

        例1

        在育才小学的运动会上,进行体操表演的同学排成方阵,每行22人,参加体操表演的同学一共有多少人?

        解

        2222=484(人)

        答:参加体操表演的同学一共有484人。

        例2

        有一个3层中空方阵,最外边一层有10人,求全方阵的人数。

        解

        10-(10-32)?

        =84(人)

        答:全方阵84人。

        例3

        有一队学生,排成一个中空方阵,最外层人数是52人,最内层人数是28人,这队学生共多少人?

        解

        (1)中空方阵外层每边人数=524+1=14(人)

        (2)中空方阵内层每边人数=284-1=6(人)

        (3)中空方阵的总人数=1414-66=160(人)

        答:这队学生共160人。

        例4

        一堆棋子,排列成正方形,多余4棋子,若正方形纵横两个方向各增加一层,则缺少9只棋子,问有棋子多少个?

        解

        (1)纵横方向各增加一层所需棋子数=4+9=13(只)

        (2)纵横增加一层后正方形每边棋子数=(13+1)2=7(只)

        (3)原有棋子数=77-9=40(只)

        答:棋子有40只。

        例5

        有一个三角形树林,顶点上有1棵树,以下每排的树都比前一排多1棵,最下面一排有5棵树。这个树林一共有多少棵树?

        解

        第一种方法:1+2+3+4+5=15(棵)

        第二种方法:(5+1)52=15(棵)

        答:这个三角形树林一共有15棵树。


    • 推荐访问: 应用题 例题 解题
    • 上一篇:2018级新生应急救护培训总结
    • 下一篇:2019年电力局供电所领导述职报告范文4篇
    • 相关内容
          
    • 七年级《骆驼祥子》读后感6篇(22年06月28日)
    •    
    • 《忏悔录》读后感2020(四)(21年10月26日)
    •    
    • 海底两万里,读后感,500字12篇(22年05月04日)
    •    
    • 《水浒传》第51回读后感3篇(22年06月10日)
    •    
    • 小学数学应用题21种类型总结(附例题、解题思路)(21年09月18日)
    •    
    • 钢铁是怎样炼成的读后感3000字以上7篇(22年05月11日)
    • 钢铁是怎样炼成的读后感3000字以上7篇(22年05月11日)
    • 钢铁是怎样炼成的读后感3000字以上7篇(22年05月11日)
    • 推荐排行
    • 政协常委会五年来工作报告3篇
    • 行政事业单位内控风险评估报告
    • 意识形态领域风险点排查情况报告6篇
    • 2020年度地区部门行政事业单位内...
    • 【关于开展《中国名师资源库资源...
    • 基层疫情防控工作情况报告4篇
    • 某证券公司营业部总经理年终述职...
    • 单位党委落实党风廉政建设主体责...
    • 2021年上半年度xx市邮政行业经济...
    • 随即浏览
    • ·落实党风廉政建设责任制检查整改...
    • ·OPPO调研报告提纲
    • ·公安个人廉洁自律自查报告三篇
    • ·2020年度党风廉政建设责任制落实...
    • ·幼儿园开学前新冠病毒疫情防控工...
    • ·扫黑除恶专项斗争开展情况调研报...
    • ·政协常委会五年来工作报告3篇
    • ·开展意识形态领域风险隐患排查情...
    • ·防止风险,消除危险,保护安全,...
    • ·行政事业单位内控风险评估报告
    • ·意识形态领域风险点排查情况报告6篇
    • ·加强党史教育调研报告三篇
    • ·十九大报告学习心得体会三篇
    • ·上半年意识形态工作分析研判报告5篇
    • ·党委班子2021年政法队伍教育整顿...
    • ·第二季度意识形态工作分析研判报...
    • ·2021年上半年落实全面从严治党主...
    • ·违反中央八项规定精神自查报告17篇
    • ·公检法三个规定自查自纠情况总结...
    • ·2021年上半年意识形态工作总结报告9篇
    • 版权所有:渝记文档网 2010-2022 未经授权禁止复制或建立镜像[渝记文档网]所有资源完全免费共享
    • Powered by 渝记文档网 © All Rights Reserved.。渝ICP备18009212号